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Abstract. This paper presents the numerical solution of the time-dependent Gross-
Pitaevskii Equation describing the movement of quantum mechanics particles under
non-homogeneous boundary conditions. Due to their inherent non-linearity, the equa-
tion generally can not be solved analytically. Instead, a highly accurate approxima-
tion to the solutions defined in a finite domain is proposed, using the Crank-Nicolson
difference method and Sinc Collocation numerical methods to discretize separately
in time and space. Two Sinc numerical approaches, involving the Sinc Collocation
Method (SCM) and the Sinc Derivative Collocation Method (SDCM), are easy to im-
plement. The results demonstrate that Sinc numerical methods are highly efficient and
yield accurate results. Mainly, the SDCM decays errors faster than the SCM. Future
work suggests that the SDCM can be extensively applied to approximate solutions
under other boundary conditions to demonstrate its broad applicability further.
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1 Introduction

1.1 Gross-Pitaevskii equation

In modern physics, the Gross-Pitaevskii Equation (GPE) as an important partial differen-
tial equation (PDE) has earned central importance due to its applications. For instance,
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it is remarkable to describe the phenomenon of a Bose-Einstein Condensate [1, 2] rep-
resenting the phase transition where a macroscopic number of particles all go into the
same quantum state while cooling them below the critical transition temperature [3]. In
this paper, we consider the two-dimensional generalized Gross-Pitaevskii Equation given
by:

iut+αuxx+αuyy+ f (x,y)u+ρ|u|2u=0, (x,y)∈Ω, t≥0, (1.1)

with the initial condition and Dirichlet boundary conditions:

u(x,y,t=0)= g(x,y,0),
u(x,y,t)=Θ(x,y,t), (x,y)∈Γ, t>0,

where i =
√
−1 is the imaginary unit, α is a real constant, t is the time variable with

t≥ 0, (x,y)∈R2, Ω denotes a bounded and open domain in R2, Γ is the simple closed
curve bounding the region Ω, u = u(x,y,t) is a complex-valued wave function, |u|2 is
named as the atomic density, |u|2u is the so-called cubic nonlinearity, and ρ is a given
dimensionless constant describing the strength of interaction (negative for the repulsive
or defocusing interaction and positive for the attractive or focusing interaction). In this
case, the interactions are weak enough that the predictions made by this equation are very
reliable [4]. The external potential function f (x,y), the function g(x,y,t) and Θ(x,y,t)
are all known real-valued functions. The special case of ρ = 0 in Eq. (1.1) corresponds
to the well-known Schrödinger Equation (SCE). Also, when f (x,y) = 0, it becomes the
standard Non-Linear Schrödinger Equation (NLSE). Therefore, the GPE incorporates the
properties of the SCE and the NLSE.

1.2 Literature review

Even though Gross, E. P. [5] and Pitaevskii, L. P. [6] separately presented the GPE in
1961, the academic research on Eq. (1.1) has not been paused, especially in its numerical
solutions. That results from the truth that analytical solutions are hard to figure out. Even
if the GPE given by Eq. (1.1) has an exact resolution, it usually exhibits large temporal and
spatial gradients, including solition solutions, breather solutions, and bound states with
multiple modes [7]. Thus, employing efficient and effective numerical methods is vital to
identify solutions’ qualitative and quantitative characteristics.

An extensive study in theoretical analyses and numerical simulations for the GPE
has existed in the literature. As one of the typical techniques, Eq. (1.1) is solved in two
time-splitting steps. The process relies on identical small time steps and eliminates the
nonlinear mechanisms influenced in the spatial domain for numerical solutions [2, 8, 9].
Due to the limitation of the technique, wide-ranging researches are intended to discretize
the GPE in time and space, respectively, for acquiring numerical solutions. With this re-
gard, the Finite Difference Method (FDM) is a sweeping way to discretize in the tempo-
ral dimension. Especially, the Crank-Nicolson Method (CNM) is a prominent numerical
treatment with the second-order accuracy for discretizing the time derivative [10]. In


