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Abstract. The aim of this paper is to present the backward substitution method for
solving a class of fractional dual-phase-lag models of heat transfer. The proposed
method is based on the Fourier series expansion along the spatial coordinate over the
orthonormal basis formed by the eigenfunctions of the corresponding Sturm-Liouville
problem. This Fourier expansion of the solution transforms the original fractional par-
tial differential equation into a sequence of multi-term fractional ordinary differential
equations. These fractional equations are solved by the use of the backward substi-
tution method. The numerical examples with temperature-jump boundary condition
and parameters of the tissue confirm the high accuracy and efficiency of the proposed
numerical scheme.
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1 Introduction

Fractional partial differential equations (FPDEs) are widely used in various areas of sci-
ence and engineering. Their advantages become apparent in modeling electrical prop-
erties of real materials, the so-called anomalous transport phenomena, and in the theory
of complex systems. The FPDEs describe important physical phenomena that arise in
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amorphous, colloid, glassy and porous materials, in fractals and percolation clusters,
dielectrics and semiconductors, biological systems, polymers, random and disordered
media, geophysical and geological processes [1–10].

Recently there has been a growing interest for fractional bioheat dual-phase-lag (DPL)
heat transfer models [11–16, 18–23] in order to get a precise prediction of thermal data
within living biological tissues in different thermal treatment processes.

In this paper we present a novel method for the class of FPDEs

Lt [v]=Mt

{
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∂x2

}
−p2Pt{v(x,t)}+ f (x,t), 0≤ x≤1, 0≤ t≤T, (1.1)

where
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αkD(µk)
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are time fractional differential operators and µ∈(l−1,l] is the order of the higher deriva-
tive of the differential operator Lt. The integer number l defines the maximal value of
the fractional order µ and so, the amount of the initial conditions needed for the FPDE.
The values 0≤µk <µ are fractional or integer constant numbers, p≥0 and αk, k=1,··· ,K,
are real numbers.

Eq. (1.1) is subjected to the initial conditions (ICs)

v(x,0)=v0(x),
∂v(x,0)

∂t
=v1(x),··· , ∂l−1v(x,0)

∂tl−1 =vl−1(x). (1.3)

We utilize l=2 and l=3 for DPL models of the first and second order respectively.
We write the boundary conditions (BCs) along the spatial coordinate in the general

form
B0 [v]x=0= g0(t), B1 [v]x=1= g1(t), (1.4)

where the operators B0, B1 conform Dirichlet’s, Neumann’s or Robin’s conditions.
The operator D(ν)

t denotes the Caputo fractional derivative defined by [26]

D(ν)
t [T(x,t)]=


1

Γ(n−ν)

∫ x

0

T(n) (x,τ)dτ

(t−τ)ν−n+1 , n−1<ν<n,

T(n) (x,t), ν=n,

(1.5)

where n∈N ={1,2,···} is the set of positive integers, and Γ(z) denotes the gamma func-
tion. In particular, for the power functions we get:

D(ν)
t [tz]=


0, if z∈N0 and z<n,

Γ(z+1)
Γ(z+1−ν)

tz−ν, if z∈N0 and z≥n or z /∈N0 and z>n−1,
(1.6)


