
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 6, No. 1, pp. 1-23

DOI: 10.4208/aamm.2013.m87
February 2014

Numerical Study of Geometric Multigrid Methods on

CPU–GPU Heterogeneous Computers

Chunsheng Feng1, Shi Shu2,∗, Jinchao Xu3 and Chen-Song Zhang4

1 Hunan Key Laboratory for Computation and Simulation in Science and Engineering,
Xiangtan University, Xiangtan 411105, China
2 Key Laboratory of Intelligent Computing and Information Processing of Ministry of
Education, Xiangtan University, Xiangtan 411105, China
3 Department of Mathematics, Pennsylvania State University, PA, USA
4 NCMIS and LSEC, Academy of Mathematics and System Sciences, Chinese Academy
of Sciences, Beijing 100190, China

Received 12 January 2013; Accepted (in revised version) 18 July 2013

Available online 13 December 2013

Abstract. The geometric multigrid method (GMG) is one of the most efficient solv-
ing techniques for discrete algebraic systems arising from elliptic partial differential
equations. GMG utilizes a hierarchy of grids or discretizations and reduces the error
at a number of frequencies simultaneously. Graphics processing units (GPUs) have
recently burst onto the scientific computing scene as a technology that has yielded
substantial performance and energy-efficiency improvements. A central challenge in
implementing GMG on GPUs, though, is that computational work on coarse levels
cannot fully utilize the capacity of a GPU. In this work, we perform numerical stud-
ies of GMG on CPU–GPU heterogeneous computers. Furthermore, we compare our
implementation with an efficient CPU implementation of GMG and with the most
popular fast Poisson solver, Fast Fourier Transform, in the cuFFT library developed by
NVIDIA.

AMS subject classifications: 65M10, 78A48

Key words: High-performance computing, CPU–GPU heterogeneous computers, multigrid
method, fast Fourier transform, partial differential equations.

1 Introduction

Simulation-based scientific discovery and engineering design demand extreme comput-
ing power and high-efficiency algorithms [7,8,31,33,34]. This demand is one of the main

∗Corresponding author.
Email: spring@xtu.edu.cn (C. S. Feng), shushi@xtu.edu.cn (S. Shu), xu@math.psu.edu (J. Xu), zhangcs@
lsec.cc.ac.cn (C.-S. Zhang)

http://www.global-sci.org/aamm 1 c©2014 Global Science Press



2 C. S. Feng, S. Shu, J. Xu and C.-S. Zhang / Adv. Appl. Math. Mech., 6 (2014), pp. 1-23

forces driving the pursuit of extreme-scale computer hardware and software during the
last few decades. It has become increasingly important for algorithms to be well-suited to
the emerging hardware architecture. In fact, the co-design of architectures, algorithms, and
applications is particulary important given that researchers are trying to achieve exascale
(1018 floating-point operations per second) computing. Although the question of what
is the best computer architecture to achieve exascale or higher remains highly debatable,
many researchers agree that hybrid architectures make sense due to energy-consumption
constraints. There are already quite a few heterogeneous computing architectures avail-
able, including the Cell Broadband Engine Architecture (CBEA), Graphics Processing
Units (GPUs), and Field Programmable Gate Arrays (FPGAs) [15, 18, 50].

A GPU is a heterogeneous co-processor that can be accessed and controlled by CPUs.
The Intel/AMD CPU accelerated by NVIDIA/AMD GPUs is probably the most com-
monly used heterogeneous high-performance computing (HPC) architecture at present.
GPU-accelerated supercomputers feature in many of the top computing systems in the
HPC Top500 [46] and the Green500 [25]. Some ”old” supercomputers, such as JAGAUR
(now known as TITAN) of the Oak Ridge National Laboratory, are being redesigned in
order to incorporate GPUs and thereby achieve better performance. GPUs have evolved
from fixed-pipeline application-specific integrated circuits into highly programmable,
versatile computing devices. Under conditions often met in scientific computing, mod-
ern GPUs surpass CPUs in computational power, data throughput, and computational
efficiency per watt by almost one order of magnitude [16, 20, 40].

Not only are GPUs the key ingredient in many current and forthcoming petaflop su-
percomputers, they also provide an affordable desktop supercomputing environment for
everyday usage, with peak computational performance matching that of the most pow-
erful supercomputers of only a decade ago. General-purpose graphics processing units
(GPGPU), as a high-performance computational device are becoming increasingly popu-
lar. NVIDIA Kepler GPU and the Intel Many Integrated Core (MIC) architecture are the
most promising heterogeneous co-processors with high energy-efficiency and computa-
tion power. The Intel Xeon Phi Coprocessor 5110P (60 cores, MIC architecture) is capable
of delivering 1 Teraflop operation in double precision per second, whereas the peak per-
formance of Tesla K20X (2688 cores) is 1.31 Teraflop operations in double precision per
second.

One of the most discussed features of the MIC architecture is that it shares the x86 in-
struction set such that users often assume that they do not need to change their existing
codebase in order to migrate to MIC. However, this assumption is subject to argument
as even if legacy code can easily be migrated, whether the application it is then used
for is able to achieve the desired performance is highly questionable. Achieving scalable
scientific applications in the exascale era is our ultimate goal. Hence, software, more im-
portantly algorithms, must adapt to unleash the power of the hardware. Unfortunately,
none of the processors envisioned at present will relieve today’s programmers from the
hard work of preparing their applications. In fact, power constraints will actually cause
us to use simpler processors at lower clock rates for the majority of our work. As an


