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Abstract. A second order accurate (in time) numerical scheme is analyzed for the
slope-selection (SS) equation of the epitaxial thin film growth model, with Fourier
pseudo-spectral discretization in space. To make the numerical scheme linear while
preserving the nonlinear energy stability, we make use of the scalar auxiliary variable
(SAV) approach, in which a modified Crank-Nicolson is applied for the surface dif-
fusion part. The energy stability could be derived a modified form, in comparison
with the standard Crank-Nicolson approximation to the surface diffusion term. Such
an energy stability leads to an H2 bound for the numerical solution. In addition, this
H2 bound is not sufficient for the optimal rate convergence analysis, and we estab-
lish a uniform-in-time H3 bound for the numerical solution, based on the higher order
Sobolev norm estimate, combined with repeated applications of discrete Hölder in-
equality and nonlinear embeddings in the Fourier pseudo-spectral space. This discrete
H3 bound for the numerical solution enables us to derive the optimal rate error esti-
mate for this alternate SAV method. A few numerical experiments are also presented,
which confirm the efficiency and accuracy of the proposed scheme.
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1 Introduction

In this article we consider a slope-selection (SS) epitaxial thin film growth equation,
which corresponds to the L2 gradient flow associated with the following energy func-
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tional

E(φ)=
∫

Ω

(
1
4
(|∇φ|2−1)2+

ε2

2
|∆φ|2

)
dx, (1.1)

where Ω=(0,Lx)×(0,Ly), u : Ω→R is a periodic height function, and ε is a constant pa-
rameter of transition layer width. In more details, the first nonlinear term represents the
Ehrlich-Schwoebel (ES) effect [23,38–40,54], which results in an uphill atom current in the
dynamics and the steepening of mounds in the film. The second higher order quadratic
term represents the isotropic surface diffusion effect [39,49]. In turn, the chemical poten-
tial becomes the following variational derivative of the energy

µ :=δφE=−∇·
(
|∇φ|2∇φ

)
−∆φ+ε2∆2φ, (1.2)

and the PDE stands for the L2 gradient flow

∂tφ=∇·
(
|∇φ|2∇φ

)
−∆φ−ε2∆2φ. (1.3)

Meanwhile, another epitaxial thin film model has also been extensively studied, with the
following energy functional

E(φ) :=
∫

Ω

(
−1

2
ln(1+|∇φ|2)+ ε2

2
|∆φ|2

)
dx, (1.4)

and the dynamical equation is formulated as

∂tφ=−∇·
( ∇φ

1+|∇φ|2
)
−ε2∆2φ. (1.5)

This model is referred to as the no-slope-selection (NSS) equation. In fact, the slope-
selection energy (1.1) could be viewed an a polynomial approximation to the no-slope-
selection energy (1.4), under a small-slope assumption that |∇φ|2� 1; see the related
discussions in [36, 37, 39, 49]. A solution to (1.3) exhibits pyramidal structures, where
the faces of the pyramids have slopes |∇u|≈1; meanwhile, the no-slope-selection equa-
tion (1.5) exhibits mound-like structures, and the slopes of which (on an infinite domain)
may grow unbounded [39,59]. On the other hand, both solutions have up-down symme-
try in the sense that there is no way to distinguish a hill from a valley. This can be altered
by adding adsorption/desorption or other dynamics.

The numerical schemes with energy stability have been of great interests, due to the
long time nature of the gradient flow coarsening process. There have been many efforts to
devise and analyze energy stable numerical schemes for both the SS and NSS equations;
see the related references [1, 11, 26, 35, 46, 50–53, 55, 59, 61, 64], etc. In particular, the linear
schemes have attracted a great amount of attentions among the energy stable numerical
approaches, due to its simplicity of implementation. For the NSS equation (1.5), there
have been extensive works of linear, energy stable numerical schemes [5, 7, 8, 10, 13, 33,
35, 44, 48], with up to the third order accuracy in time. Such a nonlinear energy stability


