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Abstract. Adaptive higher-order finite element methods (hp-FEM) are well known
for their potential of exceptionally fast (exponential) convergence. However,
most hp-FEM codes remain in an academic setting due to an extreme algorith-
mic complexity of hp-adaptivity algorithms. This paper aims at simplifying hp-
adaptivity for H(curl)-conforming approximations by presenting a novel technique
of arbitrary-level hanging nodes. The technique is described and it is demonstrated
numerically that it makes adaptive hp-FEM more efficient compared to hp-FEM on
regular meshes and meshes with one-level hanging nodes.

AMS subject classifications: 35Q60, 65N30, 65N50, 78M10

Key words: hp-FEM, arbitrary-level hanging nodes, irregular meshes, higher-order edge ele-
ments, Maxwell’s equations.

1 Introduction

Nowadays, vector-valued finite elements with continuous tangential components on
element interfaces (edge elements) are a standard tool for the solution of Maxwell’s
equations in various cavity devices such as waveguides, resonators, microwave ovens,
and other models. Edge elements are based on differential forms introduced in late
1950s by H. Whitney [19], in the context of differential geometry. Apparently, the first
link between the Whitney forms and computational electromagnetics was made in
1984 by P. R. Kotiuga in his thesis [9]. A nice monograph on this subject is [3].

Adaptive higher-order finite element methods (hp-FEM) based on higher-order
edge elements belong to the youngest topics in computational electromagnetics (see,
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e.g., [9, 10, 16] and the references therein). Especially for problems involving impor-
tant small-scale phenomena such as singularities or steep gradients along internal or
boundary layers, the efficiency gap between adaptive hp-FEM and standard adaptive
low-order FEM can be impressive. On the other hand, these methods are not used
widely by practitioners yet due to their high algorithmic complexity. From this point
of view, the design of simple hp-adaptivity algorithms is of crucial importance.

It is worth mentioning that hp-adaptivity is profoundly different from h-adaptivity
due to a large number of element refinement options per element (around 100 in 2D
and several hundred in 3D). This number depends on multiple factors such as whether
one allows anisotropic refinements in space and anisotropic (directionally different)
polynomial degrees in quadrilateral/hexahedral elements, how much the polynomial
degree is allowed to vary in subelements after an element is refined in space, etc.
Standard a-posteriori error estimates used for h-adaptivity, that only provide an in-
formation about the magnitude of error in elements, do not help to select an optimal
element refinement in hp-adaptivity. For that, one needs a much better information
about the error, namely its shape in every element. In principle, this information might
be reconstructed from suitable a-posteriori estimates of higher derivatives of the solu-
tion, but this would be extremely difficult and the authors are not aware of any such
work. Currently, the two major approaches to guiding adaptivity in higher-order fi-
nite element methods are:

1. Computing a reference solution on a globally refined mesh [11,14]. This approach is compu-
tationally expensive but on the other hand it works for any equation including multiphysics
coupled problems where no standard a-posteriori error estimates are available [7, 15,17,18].

2. Estimating analyticity of the solution in every element in order to decide whether an h-
and p-refinement should be done [8]. This technique requires additional equation-dependent
tuning parameters, and it does not allow variable polynomial degrees in subelements when an
element is refined in space.

In this paper we use the former approach, and extend a novel technique of arbitrary-
level hanging nodes [13] from standard H1-conforming (continuous scalar) approxi-
mations to vector-valued approximations in H(curl). This technique is a valuable ad-
dition to existing adaptivity algorithms since it makes it possible to refine any element
in the mesh locally, without affecting its neighbors. In turn one can design simple hp-
adaptivity algorithms that work in an element-by-element fashion. In other words,
when refining an element, one never has to refine neighboring mesh elements to keep
the mesh regular. Note that this is impossible with algorithms employing regular
meshes such as [4] or meshes containing one-level hanging nodes [6], since in these
cases one has to deal with unwanted, regularity-enforced additional refinements.

There exist several implementations of the technique of multiple-level hanging
nodes for second-order elliptic problems [6, 12, 13], but to our best knowledge, the
technique [13] is the only one to work independently of the underlying higher-order
shape functions.
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The extension of the results [13] to H(curl)-conforming approximations was non-
trivial because of different conformity requirements in the space H(curl) and different
structure and properties of higher-order shape functions (there are no vertex functions
in the H(curl)-conforming case and the higher-order shape functions are constructed
in a different way). Our implementation of inter-element constraints is compatible
with the well-known De Rham diagram [16] that connects the spaces H1 and H(curl)
through the gradient operator. Otherwise, the message of this paper is similar to the
message of [13]: arbitrary-level hanging nodes are not so difficult to implement as one
would expect, they simplify hp-adaptivity algorithms substantially, and they make the
computer code more efficient.

The algorithms presented in this paper are available on-line in the form of a mod-
ular C++ library Hermes (see, http://hpfem.org/).

The paper is organized as follows: the rest of Section 1 contains a model prob-
lem for time-harmonic Maxwell’s equations. The technique of arbitrary-level hanging
nodes for H(curl)-conforming approximations is discussed in Section 2, and a sim-
ple element-by-element hp-adaptivity algorithm is described in Section 3. Numerical
examples demonstrating the superiority of the novel hp-adaptivity algorithm over ex-
isting algorithms based on regular meshes are shown in Section 4. Conclusions and
outlook are presented in Section 5.

1.1 Time-harmonic Maxwell’s equations

Consider the problem of solving the normalized time-harmonic Maxwell’s equa-
tion [10]

∇× (
µ−1

r ∇× E
)− κ2εrE = jκ

√
µ0 Ja, (1.1)

in a bounded domain Ω ⊂ R2 with piecewise-linear boundary. Here µr=µ/µ0 is
the relative magnetic permeability, E the (complex) phasor of harmonic electric field
strength, κ=ω/c the wave number, j the imaginary unit, εr=(ε + jγ/ω)

/
ε0 the (com-

plex) relative electric permittivity, Ja the (complex) phasor of the vector-valued density
of conductive currents, ω the angular frequency and c=(√ε0µ0)−1 the speed of light
in vacuum.

Eq. (1.1) may be equipped with various types of boundary conditions, such as, for
example, the perfect conductor boundary condition

E · t = 0, on ∂Ω, (1.2)

or the impedance condition

∇× E− jλE · t = g · t, on ∂Ω. (1.3)

With (1.2), the weak formulation of (1.1) reads: find E ∈ Q, such that
∫

Ω
µ−1

r (∇× E) · (∇× F)dx−
∫

Ω
κ2εrE · Fdx

=
∫

Ω
jκ
√

µ0 Ja · Fdx, (1.4)
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for all F ∈ Q, where Q is a complex vector space defined as

Q =
{

E ∈ H(curl, Ω); E · t = 0, on ∂Ω
}

. (1.5)

The symbol F stands for the complex-conjugate of F. For completeness, let us mention
the definitions

H(curl, Ω) =
{

E ∈ [L2(Ω)]2; ∇× E ∈ L2(Ω)
}

, (1.6a)

∇× E =
∂E2

∂x1
− ∂E1

∂x2
. (1.6b)

The domain Ω is covered with a finite element mesh τh,p consisting of non-overlapping
convex elements K1, K2, · · · , KM (in practice triangles or quadrilaterals) equipped with
polynomial degrees 1 ≤ p1, p2, · · · , pM. The finite element subspace of Q has the form

Qh,p =
{

Eh,p ∈ Q; Eh,p is polynomial of degree pi in Ki, i = 1, · · · , M
}

. (1.7)

By N we denote the dimension of Qh,p (the number of degrees of freedom in the dis-
crete problem). Recall that functions in the space Qh,p are discontinuous but have
continuous tangential components on element interfaces (see, e.g., [3, 10]). In the fol-
lowing we use a standard hierarchic basis on a reference square element (−1, 1)2 that
can be found, e.g., in paragraph 2.3.2 of [16].

2 Arbitrary-level hanging nodes in H(curl)

Standard finite element mesh where every pair of adjacent elements shares either a
vertex or an entire edge, is called regular. Every edge in a regular mesh is unconstrained
since it carries one or more degrees of freedom. In a mesh with hanging nodes one has
both unconstrained and constrained edges. Such a situation is depicted in Fig. 1. There,
the edge AB of element K1 is unconstrained but the edges CB of element K2 and AC
of element K3 are constrained, since on each of them, the tangential component of the
approximation is dictated by the tangential component of the approximation on the

K1

B

A

2K

3K
C

Figure 1: Example of a mesh with one-level hanging nodes.
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Figure 2: Quadratic basis function on the edge AB. Left: tangential component corresponding to AB, right:
normal component corresponding to AB.

edge AB. Constrained edges do not carry degrees of freedom. We say that the edge
AB is constraining the edges CB and AC. For illustration, a quadratic vector-valued
edge function associated with the edge AB, with continuous tangential component
and discontinuous normal component, is shown in Fig. 2.

By EKi we denote the restriction of the function from Fig. 2 to the element Ki,
i = 1, 2, 3. The constraining function EK1 is a standard edge function. The constrained
functions EK2 and EK3 are linear combinations of standard edge functions on the cor-
responding elements such that

EK2 · tCB ≡ EK1 · tAB, on the edge CB,
and

EK3 · tAC ≡ EK1 · tAB, on the edge AC,

where tAB, tAC and tCB represent unit tangential vectors to the edges AB, AC and CB,
respectively.

In general, let the polynomial degree of the edge AB be some pAB ≥ 0. Then there
are pAB + 1 constraining shape functions on K1 associated with the edge AB, with
polynomial degrees p = 0, 1, · · · , pAB. Interior shape functions (bubble functions) are
never constraining nor constrained, and therefore they do not influence the calculation

K1

B

A

2K

C1

C
C3

2

K

K
K

4

5
6

Figure 3: Example of a mesh with three-level hanging nodes.
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of constraint coefficients. By definition, every constrained edge inherits its orientation
and polynomial degree from the constraining one (even if this is in contradiction to
the minimum rule [16]). Every edge function on K1 of polynomial degree 0≤p≤pAB
that is associated with the edge AB constrains p + 1 edge functions on the element K3
associated with edge AC and p + 1 edge functions on the element K2 associated with
edge CB.

The case of multiple-level constraints is analogous. Consider, for illustration, a
mesh with three-level hanging nodes shown in Fig. 3.

As in the previous case, there are pAB + 1 constraining edge functions on K1 asso-
ciated with the edge AB, and an edge function of polynomial degree p constrains
p + 1 edge functions on each of the elements K2, K4, K5, K6 (associated with edges
C1B, C2C1, C3C2, AC3, respectively). Example of a quadratic basis function associated
with the edge AB, which consists of a quadratic edge function EK1 on K1 constraining
quadratic edge functions on the elements K2, K4, K5, K6, is shown in Fig. 4.

Figure 4: Quadratic basis function on the edge AB. Left: tangential component corresponding to AB, right:
normal component corresponding to AB.

Next let us show how the constraint coefficients are calculated. The algorithm
requires a unique enumeration of basis functions E1, E2, · · · , EN of the finite element
space Qh,p as well as a unique local enumeration of shape functions on the reference
domain K̂. Let e be an unconstrained edge of a mesh element Ki, and let pe be the
polynomial degree of e. The element Ki is mapped onto the reference domain K̂ via a
reference map xKi : K̂ → Ki. Let ê be the edge of K̂ such that

xKi(ê) = e,

and by ϕe
0,ϕe

1, · · · ,ϕe
pe

let us denote the edge functions on K̂ associated with the edge
ê. The edge e is equipped with an edge node

de =
{

me
0, me

1, · · · , me
pe

}
, (2.1)

where me
j are indices of the basis functions of the space Qh,p that are related to the

shape functions ϕe
0,ϕe

1, · · · ,ϕe
pe

via the standard transformation relation

ϕe
j (ξ) =

(DxKi

Dξ

)T
(ξ) Eme

j

(
xKi(ξ)

)
, j = 0, 1, · · · , pe. (2.2)
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Next, let Ki be an element in the mesh whose edge e is subset of another mesh edge
AB of polynomial degree pe. In addition to the standard (unconstrained) edge node
de, we define a constrained edge node

ce = {r, qe},

where r is a reference to the standard node associated with the constraining edge AB
and the index qe identifies uniquely the geometrical position of the constrained edge
e within AB (see Fig. 5). Note that AB is oriented uniquely through the indices of the
vertices A and B, and e inherits its orientation.

−1
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5

6 7 8 9 10 11 12 13

etc.

B

B

B

B

B

A

A

A

A

A level k=4

level k=3

level k=2

level k=1

level k=0 (unconstrained)

Figure 5: Values of the index qe for various positions of a constrained edge e within a constraining edge AB.

Finally, assume a basis function Ek of the space Qh,p, whose tangential component
Ek · tAB on the edge AB is a polynomial of degree p. Restricted to the edge e ⊂ AB, the
tangential component Ek · tAB determines the constraint coefficients α

e,p
0 , α

e,p
1 , · · · , α

e,p
p

corresponding to the edge functions ϕe
0,ϕe

1, · · · ,ϕe
p on Ki. The values of these coeffi-

cients are obtained by solving a system of p + 1 linear algebraic equations of the form

p

∑
j=0

α
e,p
j ϕe

j (yp
i ) = ψe,AB(yp

i ), 0 ≤ i ≤ p,

where yp
i ∈ [−1, 1] are the p + 1 Chebyshev points of degree p on the edge e, and ψe,AB

is the tangential component Ek · tAB transformed linearly from e to [−1, 1]. Then,

ϕe =
p

∑
j=0

α
e,p
j ϕe

j ,

is a new edge function of degree p on K̂. After transforming ϕe to the element Ki
through (2.2), its tangential component on the edge e ⊂ AB matches exactly the tan-
gential component of Ek · tAB.

3 Adaptive hp-FEM based on arbitrary-level hanging nodes

In contrast to standard adaptive FEM (h-FEM), automatic adaptivity in the hp-FEM
requires more information about the behavior of the error in element interiors (see,
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e.g., [6, 8, 16] and the references therein). Some authors investigate numerically the
analyticity of the solution in every element in order to decide between p- and h-
refinement [8]. Such approach uses two refinement candidates per element, as illus-
trated in Fig. 6 (the numbers in elements stand for their polynomial degrees). Accord-
ing to our experience, at least for elliptic problems this strategy yields exponential
convergence as expected.

We prefer a different approach motivated by the work of Demkowicz et al. [6],
where more refinement candidates are considered, as shown in Fig. 7.

Figure 6: hp-adaptivity with two refinement candidates (p and h refinement).

Figure 7: hp-adaptivity with multiple refinement candidates.

Typically, we vary the polynomial degrees in the subelements by two, which for a tri-
angular element yields 34=81 h-refinement candidates. The strategy was described in
detail in [13]. Since in the latter case every refinement candidate can be reproduced
using several steps with the pair of candidates of the former strategy, it is not surpriz-
ing that usually the convergence curves are almost identical when the estimated error
is plotted as a function of the number of degrees of freedom. However, according
to our experience, computations with the latter approach usually take less CPU time
since fewer adaptivity steps are needed and thus the discrete problem is solved less
frequently.

Obviously, the latter strategy requires even more information about the error than
the level of its analyticity. In order to select an optimal refinement candidate, we need
to know the approximate shape of the error function

εh,p = E− Eh,p.

In principle, this information could be recovered from suitable estimates of higher
derivatives of the solution, but such approach is not very practical and it has not been
used by anyone to our best knowledge. In practice, we employ the technique of ref-
erence solutions [6]. The reference solution Ere f is sought in an enriched finite element
space Qre f , and the error function is approximated as

εh,p ≈ Ere f − Eh,p.
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The reference space Qre f is constructed in such a way that all elements in the mesh are
subdivided uniformly and their polynomial degree is increased, i.e.,

Qre f = Q h
2 ,p+1.

The method for selecting the optimal refinement candidate will be described in the
following.

3.1 Element-by-element adaptivity algorithm

With an a-posteriori error estimate of the form

εh,p ≈ Ere f − Eh,p, (3.1)

the outline of our hp-adaptivity algorithm is as follows:

1. Assume an initial coarse mesh τh,p consisting of (usually) quadratic elements. Besides other

technical data, user input includes a prescribed tolerance TOL > 0 for the H(curl) norm
of the approximate error function (3.1) and the number DDOF of degrees of freedom to be
added in every hp-adaptivity step,

2. Compute coarse mesh approximation Eh,p ∈ Qh,p on τh,p,

3. Find reference solution Ere f ∈ Qre f , where Qre f is obtained by dividing all elements and
increasing the polynomial degrees by one,

4. Construct the approximate error function (3.1), calculate its norm

ERR2
i = ‖εh,p‖2

A = (∇× εh,p,∇× εh,p)Ki + κ2(εh,p, εh,p)Ki ,

on every element Ki in the mesh, i = 1, 2, · · · , M. Calculate the global error

ERR2 =
M

∑
i=1

ERR2
i ,

5. If ERR ≤ TOL, stop computation and proceed to postprocessing,

6. Sort all elements into a list L according to their ERRi values in decreasing order,

7. While the number of newly added degrees of freedom in this step is less than DDOF do:

(a) Take next element K from the list L,
(b) Perform hp-refinement of K (to be described in more detail in Paragraph 3.2). Note that
the refinement of K may introduce new hanging nodes on its edges, but the surrounding mesh
elements are not affected,

8. Adjust polynomial degrees on unconstrained edges using the so-called minimum rule (every
unconstrained edge is assigned the minimum of the polynomial degrees on the pair of adjacent
elements),

9. Continue with Step 2.

Here κ=ω/c is the wave number. Our experience shows that for large κ, the adap-
tive process converges better when guided by the ‖ · ‖A-norm than with the standard
H(curl)-norm.
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3.2 Selection of suitable hp-refinement

Let K ∈ τh,p be an element of polynomial degree pK that was marked for refinement.
Without loss of generality, assume that K is a triangle, the procedure for refinement
of quadrilateral elements is analogous. We consider the following Nre f =k+(k + 1)4

refinement options, where k ≥ 0 is a user input parameter:

1. Increase the polynomial degree of K by 1, 2, · · · , k without spatial subdivision. This yields k
refinement candidates,

2. Split K into four similar triangles K1, K2, K3, K4. Define p0 to be the integer part of pK/2
(largest integer number that is less or equal to pK/2). For each Ki, 1≤i≤4 consider k + 1
polynomial degrees p0≤pi≤p0 + k. This yields additional (k + 1)4 refinement candidates. In
this case, edges lying on the boundary of K inherit the polynomial degree pj of the adjacent
interior element Kj. Polynomial degrees on interior edges are determined using the minimum
rule.

For each of these Nre f options, we perform a standard H(curl)-projection of the refer-
ence solution Ere f onto the corresponding vector-valued piecewise-polynomial space
on the refinement candidate. The candidate with minimum projection error relative
to the number of added degrees of freedom is selected. In practice, and also in the
following Section 4 we use the value k=2.

Remark 3.1. Note that if the technique of arbitrary-level hanging nodes is not in effect,
hp-refinements involving spatial subdivision can be more costly than p-refinement
candidates, since the latter never cause forced refinements. If the selection of the opti-
mal element refinement is done locally, i.e., without taking the forced refinements into
account, the hp-adaptive algorithm may make wrong decisions.

4 Numerical examples

Let us compare the performance of our algorithm with hp-adaptivity based on one-
level hanging nodes and regular meshes.

Consider a square waveguide Ω=(−0.125, 0.125)2 filled with air, containing a
spherical load of radius r=0.015625m and relative permittivity εr=5.5 (permittivity
of porcelain). The situation is depicted in Fig. 8.

We solve the normalized time-harmonic Maxwell’s equations

∇× (µ−1
r ∇× E)− κ2εrE = F,

where
µr =

µ

µ0
, κ =

ω

c
, and εr =

ε

ε0
+

jγ
ωε0

.

By L=c/ f we denote the wavelength. The frequency is chosen to be f =1.799GHz,
therefore the wavelength L=1/6m and the domain contains three halves of the wave.



528 P. Solin, L. Dubcova and I. Dolezel / Adv. Appl. Math. Mech., 4 (2010), pp. 518-532

Figure 8: Computational domain.

In the waveguide, a horizontal wave is generated by time-harmonic current along
the edge DA, using the Neumann boundary condition

n× (µ−1
r ∇× E) = −jωJa.

We use time-harmonic exciting current Ja=10−7A. The rest of the boundary is
equipped with perfect conductor boundary conditions E · t=0. The problem was
solved three-times: using adaptive hp-FEM with arbitrary-level hanging nodes, adap-
tive hp-FEM with one-level hanging nodes, and adaptive hp-FEM with regular
meshes. In Figs. 9–13 we show the approximate solution and the corresponding finite
element meshes for the three cases. In the meshes, the numbers inside the elements
stand for their polynomial degrees. The presence of two numbers (colors) inside an
element means that polynomial degrees in the horizontal and vertical direction are

Figure 9: Approximate solution E (est. rel. error 0.1% in the H(curl)-norm).
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Figure 10: Mesh with arbitrary-level hanging nodes (est. rel. error 0.1%, 4335 DOF).

Figure 11: Detail of the central part of Fig. 10 showing fourth-level hanging nodes.

different.
The rate of convergence for all three cases is compared in Fig. 14. The reader can

see there that the algorithm based on arbitrary-level hanging nodes was by far most
efficient.

4.1 Extension to 3D

Let us comment briefly on the extension to 3D. In our 3D code (which was not dis-
cussed here) we use hexahedral elements. Every hexahedral element can be split ei-
ther isotropically into 8 elements or anisotropically into 2 or 4 elements. Skipping, for
simplicity, the anisotropic refinements and the fact that one can choose different poly-
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Figure 12: Mesh with one-level hanging nodes (est. rel. error 0.1%, 8438 DOF).

Figure 13: Regular mesh (est. rel. error 1.27%, 8752 DOF). The method did not converge to the est. rel.
error level 0.1 % due to excessive memory requirements of the sparse direct solver.

nomial degrees in various directions, still one has k + (k + 1)8 candidates instead of
k + (k + 1)4 in 2D. For illustration, with k=2, this is 83 in 2D and 6563 in 3D. Therefore,
typically, we use k=2 in 2D but only k=1 in 3D.

Interestingly, however, it turns out that the parameter k has virtually no effect on
the convergence speed in terms of degrees of freedom. The reason is that for two
different values k1>k2, all refinement candidates obtained with k1 can be reproduced
in several refinement steps with k2. With k1, the mesh refinement takes longer but one
needs fewer iterations while with k2, the mesh refinement is faster but one needs more
iterations. Since every mesh refinement is followed by a global solve, one also needs
to consider the efficiency of the solver when choosing the parameter k.
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Figure 14: Convergence of adaptive hp-FEM with arbitrary-level hanging nodes, one-level hanging nodes,
and regular meshes.

5 Conclusions and outlook

We presented a novel technique of arbitrary-level hanging nodes for H(curl)-
conforming approximations. This technique eliminates regularity-enforced mesh re-
finements from the adaptive process, which in turn makes it possible to design very
simple hp-adaptivity algorithms working in an element-by-element fashion. We have
demonstrated numerically that the elimination of regularity-enforced refinements im-
proves the performance of adaptivity algorithms, compared to algorithms employing
regular meshes or meshes with one-level hanging nodes.

The simplification of hp-adaptivity algorithms is an important step towards our
major goal–the development of adaptive hp-FEM for multiphysics coupled problems.
In order to do this most efficiently, every physical field or solution component needs
to be approximated on an individual mesh equipped with an autonomous adaptivity
algorithm-we call this approach multi-mesh hp-FEM. Our first results related to the
coupled problems of linear thermoelasticity and thermally-conductive flow [17, 18]
are very promising.

The technique of arbitrary-level hanging nodes is an essential ingredient for the
multi-mesh hp-FEM since it prevents conflicting refinements across multiple meshes.
The simultaneous treatment of the electric field, temperature, flow, and possibly other
quantities via the multi-mesh hp-FEM requires an ability to combine higher-order
edge elements, standard continuous elements, discontinuous L2-elements, and pos-
sibly other element types, always with arbitrary-level hanging nodes. With the results
presented in this paper, we should now be able to extend the multi-mesh hp-FEM
from thermoelasticity and thermally-conductive flow to coupled problems of electro-
magnetics.
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