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Abstract. In this paper, we investigate the mean-square convergence of the split-step
θ-scheme for nonlinear stochastic differential equations with jumps. Under some stan-
dard assumptions, we rigorously prove that the strong rate of convergence of the split-
step θ-scheme in strong sense is one half. Some numerical experiments are carried out
to assert our theoretical result.
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1 Introduction

We consider jump-diffusion Itô stochastic differential equations (JSDEs) of the form

{

dX(t)= f (X(t−))dt+g(X(t−))dW(t)+h(X(t−))dN(t), t∈ (0,T],

X(0−)=X0,
(1.1)

where X(t−) :=lims→t−X(s), f :Rm→R
m, g :Rm→R

m×d and h :Rm→R
m, m,d∈N

+. Here
W(t) is a standard d-dimensional Brownian motion, and N(t) is a scalar Poisson process
(independent of W(t)) with intensity λ>0, both defined on a complete probability space
(Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and
right continuous and F0 contains all P-null sets). Extension of our work to vector-valued
jumps with independent entries is straightforward.

Stochastic differential equations (SDEs) have been widely used in many areas such as
chemistry, physics, engineering, biology and mathematical finance to provide models of
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dynamical systems affected by uncertainty factors. When it is the case that a stochastic
system is also influenced by some randomly occurring impulses it is often desirable to use
a jump-diffusion stochastic model such as (1.1) to characterize these burst phenomena.
For more practical applications, one can refer to [1, 4, 5, 7, 24].

Since dynamical systems modeled by SDEs rarely admit known explicit solutions,
seeking accurate numerical solutions has become a rapidly growing research area. In re-
cent years, much progress has been made in developing numerical methods for solving
SDEs [6,8,9,13–15,17,21,22,25]. However, compared with the development of numerical
methods for SDEs, numerical methods for solving JSDEs are far from undeveloped, and
thus effective and efficient numerical methods are urgently needed. In addition, most of
the existing numerical methods for (1.1) are based on globally Lipschitz conditions and
linear growth conditions (see, e.g., [1,2,11,18,19,23]) on the coefficients f , g and h. How-
ever, these conditions may be too restrictive, which may exclude lots of useful models
to be considered, such as some nonlinear problems with super-linearly growing condi-
tion coefficients. To relax the conditions, a popular choice is to use one-sided Lipschitz
condition on the drift coefficient and globally Lipschitz conditions on the diffusion and
jump coefficients [10, 12]. Motivated by the above discussions, we aim to design solvers
for (1.1) with weaker conditions on the coefficients f , g and h. More precisely, we will
theoretically prove that the split-step θ-scheme (see Section 3), admits a one half rate of
strong convergence, under the conditions that the drift coefficient f satisfies one-sided
Lipschitz condition and the diffusion coefficient g and jump coefficient h satisfy the glob-
ally Lipschitz condition.

The rest of this paper is organized as follows. In Section 2, we introduce notations and
assumptions. The split-step θ-scheme is introduced in Section 3. In Section 4, we rigor-
ously obtain the boundedness of the solutions of (1.1) and (3.1a). The boundedness will
play a key role in our proof of the convergence error estimates of the split-step θ-scheme.
Strong convergence estimates are established in Section 5. In Section 6 we present nu-
merical results to validate our theoretical findings. Finally some conclusions are given in
Section 7.

2 Notations and assumptions

Throughout the paper, 〈·,·〉 denotes the scalar inner product in R
m or R

m×d, and |·| is the
associated Euclidean vector norm or Frobenius matrix norm.

We assume the drift coefficient f satisfies the local Lipschitz condition, i.e., for each
R>0,

| f (x)− f (y)|2 ≤ LR|x−y|2 (2.1)

for all x,y∈R
m with |x|∨|y|≤R, and the one-side Lipschitz condition

〈x−y, f (x)− f (y)〉≤K1|x−y|2 for all x,y∈R
m, (2.2)
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while the diffusion and jump coefficients satisfy the global Lipschitz conditions

|g(x)−g(y)|2 ≤K2|x−y|2 for all x,y∈R
m, (2.3a)

|h(x)−h(y)|2 ≤K3|x−y|2 for all x,y∈R
m. (2.3b)

Letting y=0 in (2.2), (2.3a), and (2.3b), we can easily derive the following useful estimate
(2.4), i.e., there exists a positive constant L such that

|〈x, f (x)〉|∨|g(x)|2∨|h(x)|2 ≤ L(1+|x|2) for all x∈R
m, (2.4)

where

L=max
{(

K1+
1

2

)

,
1

2
| f (0)|2,2K2,2|g(0)|2,2K3,2|h(0)|2

}

.

In order to derive the rate of convergence, we further assume that f grows polynomially.
More precisely, we assume that there exist constants D∈R

+ and q∈Z
+ such that for all

x,y∈R
m,

| f (x)− f (y)|2 ≤D(1+|x|q+|y|q)|x−y|2. (2.5)

Note that the condition (2.5) implies the local Lipschitz condition (2.1).
In addition to all of the above assumptions, we also require that the initial data have

bounded moments, that is, for any p>0 there is a positive constant K4 such that

E[|X0|
p]<K4. (2.6)

Before closing this section, we recall that the compensated Poisson process of the Poisson
process N(t) is

Ñ(t) :=N(t)−λt. (2.7)

It is a martingale and enjoys the following properties

E[Ñ(t+s)−Ñ(t)]=0, E[|Ñ(t+s)−Ñ(t)|2]=λs, t,s≥0.

The compensated Poisson process will play an important role in our analysis.

3 The split-step θ-scheme

For simplicity, we consider the uniform partition of the interval [0,T] for a given positive
integer K. Let tn=n∆t for n=0,1,··· ,K, where ∆t=T/K. Then the split-step θ-scheme for
JSDE (1.1) is: given the initial value Y0=X0, compute {Yn}K

n=1 by

Y∗
n =Yn+∆tθ f (Y∗

n ), (3.1a)

Yn+1=Yn+∆t f (Y∗
n )+g(Y∗

n )∆Wn+h(Y∗
n )∆Nn, n=0,1,··· ,M−1, (3.1b)

for n=0,1,··· ,K−1, where θ∈ [0,1] is a fixed parameter, Yn is the approximation of X(tn)
at time tn, ∆Wn := W(tn+1)−W(tn) and ∆Nn =: N(tn+1)−N(tn) are the increments of
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Brownian motion Wt and the Poisson process Nt, respectively. Notice that, by (3.1a), for
each n (n=0,1,··· ,K−1), Y∗

n , ∆Wn and ∆Nn are independent, and Y∗
n is Ftn measurable.

In particular, in the case θ=0, the scheme (3.1a)-(3.1b) reduces to the standard Euler
scheme for JSDEs, while, if θ = 1, the proposed scheme (3.1a)-(3.1b) is equivalent to the
split-step backward Euler scheme, which has been introduced and discussed in [10, 12].
From (3.1a), we see that it is an implicit equation when θ∈

(

0,1
]

. We show in the following
lemma that (3.1a) admits an unique solution.

Lemma 3.1. Under the assumptions (2.2), if K1θ∆t≤ c< 1 holds for some positive constant c,
where L is defined in (2.4), the implicit equation (3.1a) admits a unique solution with probability
one.

The proof is similar to the proof of Lemma 3.4 in [9], so we omit it here.
For the convenience of discussion, we define the continuous extension Y(t) of Yn on

[tn,tn+1) by

Y(t) :=Yn+(t−tn) f (Y∗
n )+g(Y∗

n )∆Wn(t)+h(Y∗
n )∆Nn(t), t∈ [tn ,tn+1), (3.2)

where ∆Wn(t) :=W(t)−W(tn) and ∆Nn(t) :=N(t)−N(tn). Equivalently, we can rewrite
(3.2) in the integral form

Y(t) :=Y0+
∫ t

0
f (Y∗(s−))ds+

∫ t

0
g(Y∗(s−))dW(s)+

∫ t

0
h(Y∗(s−))dN(s), (3.3)

where

Y(s) :=
K−1

∑
n=0

Yn1{tn≤s<tn+1}(s)+YK1{s=T}(s),

Y∗(s) :=
K−1

∑
n=0

Y∗
n 1{tn≤s<tn+1}(s)+Y∗

K1{t=T}(s),

and 1F is the characteristic function of a set F, namely,

1F(t)=

{

0, t /∈F,
1, t∈F.

Note that Y(tn)=Y(tn)=Yn, meaning that Y(t) and Y(t) coincide with the discrete so-
lutions at the grid-points, hence we can study the error in Y(t) in the supremum norm.
This will of course give an immediate bound for the error in the discrete approximation.

4 Moment bounds of the exact and numerical solutions

We first introduce some known results for existence, uniqueness, and the moment bound
of the exact solution of (1.1), which can be found in [10].
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Lemma 4.1. Under the assumptions (2.1), (2.2), (2.3a), (2.3b) and (2.6), the JSDE (1.1) admits
a unique solution Xt on any bounded interval [0,T]. Moreover, for each p > 2, there exists a
constant B1=B1(p,T) such that

E

[

sup
0≤t≤T

|X(t)|p
]

≤B1(1+E[|X0|
p])<∞. (4.1)

Now we turn to show the boundedness of numerical solutions Yn and Y∗
n of the

scheme (3.1a)-(3.1b). Throughout the following analysis, C=C(p,D,θ,λ,L,T) (indepen-
dent of ∆t) denotes a generic constant that may change between occurrences.

Lemma 4.2. Suppose (2.2), (2.3a), (2.3b) and (2.6) hold, and let the step size satisfy ∆t<∆t0 <

1/2L, then for each p≥2, 1/2≤θ≤1, there exists a constant B2=B2(p,θ,λ,L,T)>0 (independent
of ∆t) such that

E

[

sup
0≤n∆t≤T

|Yn|
2p
]

∨

E

[

sup
0≤n∆t≤T

|Y∗
n |

2p
]

≤B2<∞, (4.2)

where Y∗
n and Yn are defined in (3.1a)-(3.1b).

Proof. Let N and M be two positive integers satisfying N∆t≤M∆t≤T. By (2.4) and (3.1a)
we have

|Y∗
n |

2=〈Yn,Y∗
n 〉+θ∆t〈 f (Y∗

n ),Y
∗
n 〉

≤
1

2
|Yn|

2+
1

2
|Y∗

n |
2+Lθ∆t(1+|Y∗

n |
2)

≤C1|Yn|
2+C2, (4.3)

where

C1=
1

1−2Lθ∆t0
, C2=

2L∆t0θ

1−2Lθ∆t0
.

By squaring both sides of the second equation in (3.1a), we deduce

|Yn+1|
2=|Yn|

2+∆t2(1−2θ)| f (Y∗
n )|

2+|g(Y∗
n )∆Wn |

2+|h(Y∗
n )∆Nn |

2+2∆t〈Y∗
n , f (Y∗

n )〉

+
2

θ
〈Y∗

n ,g(Y∗
n )∆Wn〉+

(

2−
2

θ

)

〈Yn,g(Y∗
n )∆Wn〉+

2

θ
〈Y∗

n ,h(Y∗
n )∆Nn〉

+
(

2−
2

θ

)

〈Yn,h(Y∗
n )∆Nn〉+2〈g(Y∗

n )∆Wn,h(Y∗
n )∆Nn〉.

Then, for 1/2≤ θ≤1, we have by (4.3)

|Yn+1|
2≤|Yn|

2+2∆tL(1+|Y∗
n |

2)+|g(Y∗
n )∆Wn|

2+|h(Y∗
n )∆Nn|

2

+
2

θ
〈Y∗

n ,g(Y∗
n )∆Wn〉+

(

2−
2

θ

)

〈Yn,g(Y∗
n )∆Wn〉

+
2

θ
〈Y∗

n ,h(Y∗
n )∆Nn〉+

(

2−
2

θ

)

〈Yn,h(Y∗
n )∆Nn〉

+2〈g(Y∗
n )∆Wn,h(Y∗

n )∆Nn〉
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=|Yn|
2+A1∆t|Yn|

2+A2∆t+|g(Y∗
n )∆Wn |

2+|h(Y∗
n )∆Nn |

2

+A3〈Y
∗
n ,g(Y∗

n )∆Wn〉+A4〈Yn,g(Y∗
n )∆Wn〉

+A3〈Y
∗
n ,h(Y∗

n )∆Nn〉+A4〈Yn,h(Y∗
n )∆Nn〉

+2〈g(Y∗
n )∆Wn,h(Y∗

n )∆Nn〉,

where A1=2LC1, A2=2L(1+C2), A3=2/θ, A4=(2−2/θ). Adding up the above inequality
with respect to n from 0 to N−1 leads to

|YN |
2≤|Y0|

2+A1∆t
N−1

∑
j=0

|Yj|
2+NA2∆t+

N−1

∑
j=0

|g(Y∗
j )∆Wj|

2+
N−1

∑
j=0

|h(Y∗
j )∆Nj|

2

+A3

N−1

∑
j=0

〈Y∗
j ,g(Y∗

j )∆Wj〉+A4

N−1

∑
j=0

〈Yj,g(Y
∗
j )∆Wj〉+A3

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )∆Nj〉

+A4

N−1

∑
j=0

〈Yj,h(Y
∗
j )∆Nj〉+2

N−1

∑
j=0

〈g(Y∗
j )∆Wj,h(Y

∗
j )∆Nj〉.

Taking the power p on both sides of the above inequality and using the inequality

( n

∑
i=1

ai

)p
≤np−1

n

∑
i=1

|ai|
p, (4.4)

we deduce

1

10p−1
|YN |

2p

≤|Y0|
2p+|A1∆t|p

(N−1

∑
j=0

|Yj|
2
)p

+|A2T|p+
(N−1

∑
j=0

|g(Y∗
j )∆Wj|

2
)p

+
(N−1

∑
j=0

|h(Y∗
j )∆Nj|

2
)p

+|A3|
p
∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,g(Y∗

j )∆Wj〉
∣

∣

∣

p
+|A4|

p
∣

∣

∣

N−1

∑
j=0

〈Yj,g(Y
∗
j )∆Wj〉

∣

∣

∣

p

+|A3|
p
∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )∆Nj〉
∣

∣

∣

p
+|A4|

p
∣

∣

∣

N−1

∑
j=0

〈Yj,h(Y
∗
j )∆Nj〉

∣

∣

∣

p
+2p

∣

∣

∣

N−1

∑
j=0

〈g(Y∗
j )∆Wj,h(Y

∗
j )∆Nj〉

∣

∣

∣

p

≤|Y0|
2p+|A1|

pTp−1∆t
N−1

∑
j=0

|Yj|
2p+|A2T|p+

7

∑
j=1

Tj,N, (4.5)

where Tj,N is the (3+ j)th term on the right hand side of the above inequality. Now
combining the estimates (A.1)-(A.8) of Tj,N (j=1,··· ,7) (see in Appendix), we obtain

E

[

sup
0≤N≤M

|YN |
2p
]

≤C+C∆t
M−1

∑
j=0

E[|Yj|
2p]≤C+C∆t

M−1

∑
j=0

E

[

sup
0≤N≤j

|YN |
2p
]

.

Then, the boundedness of E[sup0≤n∆t≤T |Yn|2p] follows by using the discrete-type Gron-

wall inequality. The boundedness of E[sup0≤n∆t≤T |Y
∗
n |

2p] is obtained thanks to (4.3).
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From the above lemma and the definitions of Y(t) and Y∗(t) in (3.3), we have the
following corollary.

Corollary 4.1. Let Y(t) and Y∗(t) be defined in (3.3). Then

E

[

sup
0≤t≤T

|Y(t)|p
]

∨

E

[

sup
0≤t≤T

|Y∗(t)|p
]

≤B3<∞, ∀p≥2, (4.6)

where B3=B2(p,θ,λ,L,T)>0 is a constant which is independent of ∆t.

Similar to the proof of Corollary 3.8 in [9], we can prove

Lemma 4.3. Suppose the conditions in Lemma (4.2) are fulfilled, then we have the estimate

E

[

sup
0≤t≤T

|Y(t)|2p
]

≤B4<∞, ∀p≥2, (4.7)

where B4=B4(p,θ,λ,L,T) is a positive constant independent of ∆t.

5 Error estimates

Now we are ready to give our convergence result in the following theorem.

Theorem 5.1. Let X(t) and Y(t) be the solution of (1.1) and (3.2), respectively. Then under
assumptions (2.1), (2.2), (2.3a), (2.3b), (2.5) and (2.6), if 1/2≤ θ≤1 and ∆t<∆t0 <1/2L with
constant L in (2.4), we have the estimate

E

[

sup
0≤t≤T

|Y(t)−X(t)|2
]

=O(∆t).

Proof. Let e(t) :=X(t)−Y(t). From (1.1) and(3.3), we get

e(t)=
∫ t

0

(

f (X(s−))− f (Y∗(s−))
)

ds+
∫ t

0

(

g(X(s−))−g(Y∗(s−))
)

dW(s)

+
∫ t

0

(

h(X(s−))−h(Y∗(s−))
)

dN(s). (5.1)

Applying the general Itô formula [4] to |e(t)|2 gives

|e(t)|2 =
∫ t

0
2〈 f (X(s−))− f (Y∗(s−)),e(s−)〉+|g(X(s−))−g(Y∗(s−))|

2ds

+
∫ t

0
2〈e(s−),g(X(s−))−g(Y∗(s−))dW(s)〉

+
∫ t

0
2〈e(s−),h(X(s−))−h(Y∗(s−))〉+|h(X(s−))−h(Y∗(s−))|

2dN(s)
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=
∫ t

0
2〈 f (X(s−))− f (Y∗(s−)),e(s−)〉+|g(X(s−))−g(Y∗(s−))|

2ds

+λ

∫ t

0
2〈e(s−),h(X(s−))−h(Y∗(s−))〉+|h(X(s−))−h(Y∗(s−))|

2ds

+M1(t)+M2(t), (5.2)

where

M1(t)=
∫ t

0
2〈e(s−),g(X(s−))−g(Y∗(s−))dW(s)〉,

M2(t)=
∫ t

0
2〈e(s−),h(X(s−))−h(Y∗(s−))〉+|h(X(s−))−h(Y∗(s−))|

2dÑ(s).

By the assumptions (2.2) and (2.5), we deduce

∫ t

0
〈 f (X(s−))− f (Y∗(s−)),e(s−)〉ds

=
∫ t

0
〈 f (X(s−))− f (Y(s−)),e(s−)〉ds+

∫ t

0
〈 f (Y(s−))− f (Y∗(s−)),e(s−)〉ds

≤C
∫ t

0
|e(s−)|

2ds+C
∫ t

0
| f (Y(s−))− f (Y∗(s−))|

2+|e(s−)|
2ds

≤C
∫ t

0
|e(s−)|

2ds+C sup
0≤s≤t

|Y(s)−Y∗(s)|2
∫ t

0
(1+|Y(s−)|

q+|Y∗(s−)|
q)ds.

The global Lipschitz condition on g gives us

∫ t

0
|g(X(s−))−g(Y∗(s−))|

2ds

=
∫ t

0
2|g(X(s−))−g(Y(s−))|

2ds+
∫ t

0
2|g(Y(s−))−g(Y∗(s−))|

2ds

≤C
∫ t

0
|e(s−)|

2ds+C
∫ t

0
|Y(s−)−Y∗(s−)|

2ds

≤C
∫ t

0
|e(s−)|

2ds+C sup
0≤s≤t

|Y(s)−Y∗(s)|2.

Hence,

∫ t

0
2〈 f (X(s−))− f (Y∗(s−)),e(s−)〉+|g(X(s−))−g(Y∗(s−))|

2ds

≤C
∫ t

0
|e(s−)|

2ds+C sup
0≤s≤t

|Y(s)−Y∗(s)|2
∫ t

0
(1+|Y(s−)|

q+|Y∗(s−)|
q)ds

+C sup
0≤s≤t

|Y(s)−Y∗(s)|2. (5.3)
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Similarly, we have

λ

∫ t

0
2〈e(s−),h(X(s−))−h(Y∗(s−))〉+|h(X(s−))−h(Y∗(s−))|

2ds

≤C
∫ t

0
|e(s−)|

2+|h(X(s−))−h(Y∗(s−))|
2ds

≤C
∫ t

0
|e(s−)|

2ds+C sup
0≤s≤t

|Y(s)−Y∗(s)|2. (5.4)

By the definitions of Y(t) and Y∗(t), for t∈
[

tn,tn+1

)

we have

|Y(t)−Y∗(t)|2=|(t−tn−θ∆t) f (Y∗
n )+g(Y∗

n )∆Wn(t)+h(Y∗
n )∆Nn(t)|

2

≤3
(

(1−θ)2∆t2)| f (Y∗
n )|

2+|g(Y∗
n )|

2|∆Wn(t)|
2+|h(Y∗

n )|
2|∆Nn(t)|

2
)

≤C
(

∆t2(1+|Y∗
n |

q)+(1+|Y∗
n |

2)|∆Wn(t)|
2+(1+|Y∗

n |
2)|∆Nn(t)|

2
)

.

Then by Lemma 4.2, we obtain

E

[

sup
tn≤t<tn+1

|Y(t)−Y∗(t)|2
]

=C∆t2+CE

[

sup
tn≤t<tn+1

|∆Wn(t)|
2
]

+CE

[

sup
tn≤t<tn+1

|∆Nn(t)|
2
]

≤C∆t. (5.5)

Combining (5.2), (5.3), (5.4) and (5.5), we deduce

E

[

sup
0≤s≤t

|e(s)|2
]

≤C
∫ t

0
E[|e(s−)|

2]ds+C∆t+C∆t
∫ t

0
E[1+|Y(s)|q+|Y∗(s)|q]ds+φ(t)+ψ(t)

≤C
∫ t

0
E[|e(s−)|

2]ds+C∆t+φ(t)+ψ(t), (5.6)

where

φ(t)=E

[

sup
0≤s≤t

|M1(s)|
]

, ψ(t)=E

[

sup
0≤s≤t

|M2(s)|
]

.

Similar to the proof of Theorem 4.4 in [9], by the Burkhold-Davis-Gundy inequality and
the Young inequality [9], we have the following estimates

φ(t)≤
1

4
E

[

sup
0≤s≤t

|e(s−)|
2
]

+C
∫ t

0
E[|e(s−)|

2]ds+C∆t, (5.7a)

ψ(t)≤
1

4
E

[

sup
0≤s≤t

|e(s−)|
2
]

+C
∫ t

0
E[|e(s−)|

2]ds+C∆t. (5.7b)
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Inserting (5.7) into (5.6) yields

E

[

sup
0≤s≤t

|e(s)|2
]

≤C
∫ t

0
E[|e(s−)|

2]ds+C∆t

≤C
∫ t

0
E

[

sup
0≤r≤s

|e(r−)|
2
]

ds+C∆t.

The proof is completed by using Gronwall lemma.

Remark 5.1. The obtained error estimates hold true for nonuniform time partition.

Remark 5.2. The schemes introduced in [10, 12] is a special case of our split-step back-
ward Euler scheme with θ=1, i.e., our scheme is more general. The proof of convergence
error estimate result is different from those used in [10,12], in which the authors got their
estimates by changing their scheme to a Euler scheme for a modified JSDE. In this paper,
we deduced our error estimates by introducing a extended time-continuous JSDE. Our
proof is more direct and much simpler than that used in [10, 12].

6 Numerical experiments

In this section, we will present some numerical examples to show the properties of the
split-step θ-scheme.

In our numerical experiments, the errors e between exact solutions and numerical
solutions are measured by

e := Ê[|X(T)−Yk|] :=
1

Nmc

Nmc

∑
i=1

|X(i)(T)−Y
(i)
K |,

where the positive integer Nmc is the sample times in numerical tests, Y
(i)
K is the numer-

ical approximation solution at the time tk = T by our split-step θ-scheme (3.1a)-(3.1b) at
the ith sampling. Note that the Ê[|X(T)−Yk|] is the Monte-Carlo approximation of the
mathematical expectation E[|X(T)−Yk |].

We choose the jump intensity λ= 1, the initial value X0 = 1, and the sampling times
number Nmc=5000 in our numerical simulations.

In order to show the performance of the split-step θ-scheme (3.1a)-(3.1b), we consider
two different types of examples respectively. For one type, all the coefficients f , g and h in
(1.1) satisfy global Lipschitz conditions. For the other, the coefficient f satisfies the one-
side Lipchitz condition, and the coefficients g and h are globally Lipschitz continuous.
Further, in each example, we simulate several different cases in order to detect the effects
of the parameter θ in the split-step θ-scheme (3.1a)-(3.1b) and the stochastic noises in the
models on the proposed scheme.
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6.1 Numerical example I

Considering the first type example, for simplicity, we use the linear JSDE
{

dX(t)= aX(t−)dt+bX(t−)dWt+cX(t−)dN(t), t∈ (0,T],

X(0)=X0,
(6.1)

where a, b and c are real numbers. It is well known that the exact solution of (6.1) is

X(t)=X(0)e(a− 1
2 b2)t+bW(t)(1+c)N(t).

To test the effects of stochastic noises in the model on the split-step θ-scheme (3.1a)-(3.1b),
we consider various cases.

We list the errors e and the convergence rates CR with different θ’s in the split-step
θ-scheme (3.1a)-(3.1b) for five sets of the parameters in Tables 1-5.

Table 1: Errors e and convergence rates CR with a=1, b=1, c=1, T=1.

∆t 2−5 2−6 2−7 2−8 CR
θ=0 1.0391 0.7842 0.5398 0.3784 0.5149

θ=0.25 1.0265 0.7109 0.5235 0.3550 0.4924
θ=0.5 1.0901 0.7701 0.5319 0.3882 0.5147

θ=0.75 1.0658 0.7400 0.5124 0.3549 0.4916
θ=1 1.0811 0.7724 0.5418 0.3913 0.5045

Table 2: Errors e and convergence rates CR with a=1, b=0.01, c=1, T=1.

∆t 2−5 2−6 2−7 2−8 CR
θ=0 0.4076 0.2053 0.1079 0.0570 0.9710

θ=0.25 0.3719 0.1830 0.0869 0.0367 1.0377
θ=0.5 0.2118 0.1046 0.0460 0.0256 0.8559

θ=0.75 0.1609 0.0568 0.0255 0.0107 1.1064
θ=1 0.2367 0.1211 0.0687 0.0342 1.1344

Table 3: Errors e and convergence rates CR with a=1, b=1, c=0.01, T=1.

∆t 2−5 2−6 2−7 2−8 CR
θ=0 0.2758 0.2030 0.1425 0.1007 0.4941

θ=0.25 0.2635 0.1815 0.1305 0.0951 0.4947
θ=0.5 0.2814 0.1940 0.1385 0.0995 0.4972

θ=0.75 0.2820 0.1946 0.1379 0.0990 0.5041
θ=1 0.2937 0.2036 0.1396 0.0997 0.5002

6.2 Numerical example II

For the second type of example, we consider the nonlinear JSDE as follows.

dX(t)=
((

η+
1

2
σ2

)

X(t−)+κX(t−)
3
)

dt+σX(t−)dWt+γX(t−)dN(t) (6.2)
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Table 4: Errors e and convergence rates CR with a=1, b=0.01, c=0.01, T=1.

∆t 2−5 2−6 2−7 2−8 CR
θ=0 0.0425 0.0216 0.0109 0.0055 0.9951

θ=0.25 0.0216 0.0109 0.0055 0.0028 0.9961
θ=0.5 0.0005070 0.0002734 0.0001437 0.0000742 0.9184

θ=0.75 0.0217 0.0107 0.0053 0.0027 1.0040
θ=1 0.0442 0.0218 0.0108 0.0054 1.0050

Table 5: Errors e and convergence rates CR with a=1, b=0.0001, c=0.0001, T=1.

∆t 2−5 2−6 2−7 2−8 CR
θ=0 0.0413 0.0209 0.0105 0.0053 0.9952

θ=0.25 0.0208 0.0105 0.0053 0.0026 0.9962
θ=0.5 0.0002170 0.0000532 0.0000128 0.0000029 1.7574

θ=0.75 0.0217 0.0107 0.0053 0.0027 1.0038
θ=1 0.0437 0.0215 0.0107 0.0053 1.0050

Table 6: The errors e and the convergence rates CR with η=0.5, κ=−1, σ=2, γ=1, T=1.

∆t 2−11 2−12 2−13 2−14 CR
θ=0 0.0199 0.0137 0.0096 0.0066 0.5266

θ=0.25 0.0199 0.0138 0.0097 0.0066 0.5252
θ=0.5 0.0198 0.0138 0.0096 0.0067 0.5207
θ=0.75 0.0201 0.0140 0.0098 0.0066 0.5299

θ=1 0.0201 0.0139 0.0097 0.0068 0.5233

Table 7: The errors e and the convergence rates CR with η=0.5, κ=−1, σ=0.02, γ=1, T=1.

∆t 2−11 2−12 2−13 2−14 CR
θ=0 0.0002549 0.0001275 0.0000688 0.0000386 0.9055

θ=0.25 0.0001761 0.0000933 0.0000488 0.0000264 0.9150
θ=0.5 0.0002450 0.0001235 0.0000643 0.0000336 0.9543

θ=0.75 0.0004535 0.0002239 0.0001106 0.0000542 1.0215
θ=1 0.0006264 0.0003117 0.0001519 0.0000745 1.0252

for t ∈ (0,T] with initial condition X(0) = X0, where η, κ, σ and γ are real parameters.
In the following experiments, we choose different η, κ, σ and γ such that conditions in
Section 2 hold. Since the exact solution of (6.2) can not be expressed in explicit closed
form, we take split-step θ-scheme (3.1a)-(3.1b) with a very small time step, we choose
∆t=2−18, as our exact reference solution.

Consider six sets of parameters for the same purpose as Numerical example I, and
display the errors e and the convergence rates CR with different θ’s in Tables 6-11.

From all the results listed in above Tables 1-11, we conclude that:

1. The convergence rate of the split-step θ-scheme (3.1a)-(3.1b) is 0.5 for solving gen-
eral JSDEs. This one half convergence rate result is consistent with our theoretical
one in Theorem 5.1;
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Table 8: The errors e and the convergence rates CR with η=0.5, κ=−1, σ=2, γ=0.01, T=1.

∆t 2−11 2−12 2−13 2−14 CR
θ=0 0.0171 0.0116 0.0082 0.0057 0.5218

θ=0.25 0.0172 0.0120 0.0085 0.0057 0.5260
θ=0.5 0.0172 0.0119 0.0083 0.0058 0.5197

θ=0.75 0.0173 0.0121 0.0085 0.0058 0.5255
θ=1 0.0168 0.0119 0.0084 0.0058 0.5133

Table 9: The errors e and the convergence rates CR with η=0.5, κ=−1, σ=0.02, γ=0.01, T=1.

∆t 2−11 2−12 2−13 2−14 CR
θ=0 0.00003621 0.00001797 0.00000885 0.00000431 1.0233

θ=0.25 0.00001730 0.00000861 0.00000427 0.00000212 1.0095
θ=0.5 0.000004650 0.000002692 0.000001646 0.000001041 0.7185

θ=0.75 0.00002081 0.00001034 0.00000510 0.00000250 1.0190
θ=1 0.00003972 0.00001971 0.00000963 0.00000466 1.0305

Table 10: The errors e and the convergence rates CR with η=0.5, κ=−1, σ=0.000002, γ=0.000001, T=1.

∆t 2−11 2−12 2−13 2−14 CR
θ=0 3.7080E-05 1.8392E-05 9.0494E-06 4.3786E-06 1.0269

θ=0.25 1.8537E-05 9.1952E-06 4.5245E-06 2.1892E-06 1.0269
θ=0.5 6.1899E-09 1.5881E-09 4.1575E-10 1.1329E-10 1.9249
θ=0.75 1.8542E-05 9.1964E-06 4.5249E-06 2.1894E-06 1.0270

θ=1 3.7062E-05 1.8387E-05 9.0483E-06 4.3784E-06 1.0267

Table 11: The errors e and the convergence rates CR with η=0.5, κ=−1, σ=0.02, γ=1, T=100.

∆t 2−11 2−12 2−13 2−14 CR
θ=0 NaN NaN 0.0107 0.0034 –

θ=0.25 0.0189 0.0088 0.0044 0.0021 1.0502
θ=0.5 0.0347 0.0162 0.0076 0.0035 1.1006

θ=0.75 0.0508 0.0238 0.0118 0.0057 1.0503
θ=1 0.0693 0.0310 0.0160 0.0080 1.0330

2. Table 1 and Table 2, Table 6 and Table 7 show that the accuracy of the scheme will
increase and the convergence rate of the scheme will rise to order 1 when the dif-
fusion coefficient g becomes small with the jump coefficient h fixed. And Table 1
and Table 3, Table 6 and Table 8 show that the accuracy and the convergence rate
are improved little when the jump coefficient h becomes smaller with the diffusion
coefficient g fixed;

3. Taking Table 1 and Table 4, Table 6 and Table 9 into consideration, we find that
the accuracies are highly improved and the convergence rates can reach order 1
when the diffusion coefficient g and the jump coefficient h become smaller simul-
taneously, and furthermore when the coefficients are very small, the convergence
rate of the scheme (3.1a)-(3.1b) with θ = 0.5 becomes 2, which is the same as the
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Crank-Nicolson scheme for solving deterministic ODEs. These observations are in-
teresting since the coefficients are often small in many realistic applications. We
will analyze the split-step θ-scheme (3.1a)-(3.1b) for JSDEs with small noises in our
future work;

4. The split-step θ-scheme (3.1a)-(3.1b) with θ=1 is equivalent to the split-step back-
ward Euler scheme considered in [10,12], and in this case, our numerical and theo-
retical results coincide with those obtained in [10, 12];

5. From all the results listed in above tables, the θ=0.5 should be a good choice for the
split-step scheme (3.1a)-(3.1b) for JSDEs, especially for JSDEs with small noises.

7 Conclusions

In this paper we studied the split-step θ-scheme for nonlinear stochastic differential equa-
tions with jumps. Under relatively weaker conditions, we proved that the proposed
scheme enjoys strong convergence of order 1/2. Particularly, in the case θ = 1, the pro-
posed scheme becomes split-step backward Euler scheme, which is introduced and dis-
cussed in [10, 12]. The theoretical results are conformed by various experiments. The
experiment results also show that it is more accurate for solving JSDEs with small noises
when θ=0.5 is used in the scheme. In the future work, we will consider the effects of the
noise coefficients on the error estimates of the split-step θ-scheme for JSDEs.

Appendix: Estimates of the terms Tj,N (j=1,··· ,7)

Estimates of the terms Tj,N (j=1,··· ,7).
(1) The estimate of T1,N . By (4.4), we obtain the estimate

T1,N ≤Np−1
(N−1

∑
j=0

|g(Y∗
j )∆Wj|

2p
)

.

Then combining with (2.4) and (4.3), we deduce

E

[

sup
1≤N≤M

T1,N

]

≤Mp−1
E

[M−1

∑
j=0

|g(Y∗
j )∆Wj|

2p
]

≤Mp−1
M−1

∑
j=0

E[|g(Y∗
j )|

2p]E[|∆Wj |
2p]

≤CMp−1∆tp
M−1

∑
j=0

E[(1+|Y∗
j |)

2p]

≤C+C∆t
M−1

∑
j=0

E[|Yj|
2p]. (A.1)
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(2) The estimate of T2,N . By the definition of T2,N , we have the following estimate

E

[

sup
1≤N≤M

T2,N

]

≤CE

[

sup
0≤N≤M

(N−1

∑
j=0

|h(Y∗
j )∆Ñj|

2
)p]

+CE

[

sup
0≤N≤M

(N−1

∑
j=0

|h(Y∗
j )∆t|2

)p]

≤CE

[

sup
0≤N≤M

(N−1

∑
j=0

|h(Y∗
j )|

2(∆Ñ2
j −2Ñj∆Ñj)

)p]

+CE

[

sup
0≤N≤M

(N−1

∑
j=0

|h(Y∗
j )∆t|2

)p]

≤CE

[

sup
0≤N≤M

(N−1

∑
j=0

|h(Y∗
j )|

2Ň(t)
)p]

+CE

[

sup
0≤N≤M

(N−1

∑
j=0

|h(Y∗
j )|

2Ñj∆Ñj

)p]

+CE

[

sup
0≤N≤M

(N−1

∑
j=0

|h(Y∗
j )|

2∆t
)p]

+CE

[

sup
0≤N≤M

(N−1

∑
j=0

|h(Y∗
j )∆t|2

)p]

,

where Ñ(t) = N(t)−λt and Ň(t) = Ñ(t)2−λt. By the definition of N(t), the processes
Ñ(t) and Ň(t) are all martingales. Using the Burkhold-Davis-Gundy inequality [16] and
the inequality (4.4), we have

E

[

sup
1≤N≤M

T2,N

]

≤CE

[M−1

∑
j=0

|h(Y∗
j )|

4∆t
]p/2

+CE

[M−1

∑
j=0

|h(Y∗
j )|

4Ñ2
j ∆t

]p/2

+C∆tp Mp−1
M−1

∑
j=0

E[|h(Y∗
j )|

2p]+C∆t2p Mp−1
M−1

∑
j=0

E[|h(Y∗
j )|

2p]

≤C∆t
M−1

∑
j=0

E[|h(Y∗
j )|

2p]+C∆t
M−1

∑
j=0

E[|h(Y∗
j )|

2pÑ
p
j ].

Then by the assumption (2.4) and the estimate

E[|h(Y∗
j )|

2pÑ
p
j ]=

∞

∑
i=0

E[E[|h(Y∗
j )|

2p(i−λtj)
p|Nj = i]]P(Nj = i)

=
∞

∑
i=0

E[E[|h(Y∗
j )|

2p|Nj = i]]
e−λtj(λtj)

i

i!
(i−λtj)

p

=E[|h(Y∗
j )|

2p]
∞

∑
i=0

e−λtj(λtj)
i

i!
(i−λtj)

p≤CE[|h(Y∗
j )|

2p]

≤C+CE[|Yj|
2p],

we obtain the estimate

E

[

sup
1≤N≤M

T2,N

]

≤C+C∆t
M−1

∑
j=0

E[|Yj|
2p]. (A.2)
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(3) The estimates of T3,N and T4,N . Using together the Burkhold-Davis-Gundy in-
equality and the inequality (4.4) yields

E

[

sup
0≤N≤M

T3,N

]

≤CE

[M−1

∑
j=0

|Y∗
j |

2|g(Y∗
j )|

2∆t
]p/2

≤C∆tp/2Mp/2−1
E

[M−1

∑
j=0

|Y∗
j |

p(1+|Y∗
j |

2)p/2
]

≤C∆tp
M−1

∑
j=0

[1+E|Y∗
j |

2p]≤C+C∆t
M−1

∑
j=0

E[|Yj|
2p]. (A.3)

Similarly, we have

E

[

sup
0≤N≤M

T4,N

]

≤CE

[M−1

∑
j=0

|Yj|
2|g(Y∗

j )|
2∆t

]p/2
≤C+C∆t

M−1

∑
j=0

E[|Yj|
2p]. (A.4)

(4) The estimates of T5,N and T6,N . We have the estimate

∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )∆Nj〉
∣

∣

∣

p
≤C

∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )∆Ñj〉
∣

∣

∣

p
+C

∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )∆t〉
∣

∣

∣

p

≤C
∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )∆Ñj〉
∣

∣

∣

p
+C∆tp

∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )〉
∣

∣

∣

p
. (A.5)

Using together the assumption (2.3b), the Burkhold-Davis-Gundy inequality and the in-
equality (4.4) gives

E

[

sup
0≤N≤M

∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )∆Ñj〉
∣

∣

∣

p]

≤CE

[M−1

∑
j=0

|Y∗
j |

2|h(Y∗
j )|

2∆t
]p/2

≤C∆tp/2Mp/2−1
E

[M−1

∑
j=0

|Y∗
j |

p(1+|Y∗
j |

2)p/2
]

≤C+C∆t
M−1

∑
j=0

E[|Yj|
2p].

Thus we deduce

E

[

sup
0≤N≤M

T5,N

]

≤CE

[

sup
0≤N≤M

∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )∆Ñj〉
∣

∣

∣

p]

+C∆tpCE

[

sup
0≤N≤M

∣

∣

∣

N−1

∑
j=0

〈Y∗
j ,h(Y∗

j )〉
∣

∣

∣

p]
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≤C+C∆t
M−1

∑
j=0

E[|Yj |
2p]+C∆tp Mp−1

E

[M−1

∑
j=0

|Y∗
j |

p(1+|Y∗
j |

2)p/2
]

≤C+C∆t
M−1

∑
j=0

E[|Yj |
2p]. (A.6)

Similarly, we have the estimate

E

[

sup
0≤N≤M

T6,N

]

≤C+C∆t
M−1

∑
j=0

E[|Yj|
2p]. (A.7)

(5) The estimate of T7,N . Finally, by using the independence of Brownian motion W(t)
and the Poisson process N(t), we have

E

[

sup
0≤N≤M

T7,N

]

≤CE

[

sup
0≤N≤M

∣

∣

∣

N−1

∑
j=0

〈g(Y∗
j )∆Wj,h(Y

∗
j )∆Ñj〉

∣

∣

∣

p]

+CE

[

sup
0≤N≤M

∣

∣

∣

N−1

∑
j=0

〈g(Y∗
j )∆Wj,h(Y

∗
j )∆t〉

∣

∣

∣

p]

≤CE

[M−1

∑
j=0

|g(Y∗
j )|

2|h(Y∗
j )|

2∆t
]p/2

+C∆tp
E

[

sup
0≤N≤M

∣

∣

∣

N−1

∑
j=0

〈g(Y∗
j )∆Wj,h(Y

∗
j )〉

∣

∣

∣

p]

≤CE

[M−1

∑
j=0

|g(Y∗
j )|

2|h(Y∗
j )|

2∆t
]p/2

+C∆tp
E

[M−1

∑
j=0

|g(Y∗
j )|

2|h(Y∗
j )|

2∆t
]p/2

.

Thus,

E

[

sup
0≤N≤M

T7,N

]

≤C∆tp/2Mp/2−1
E

[M−1

∑
j=0

|g(Y∗
j )|

p|h(Y∗
j )|

p
]

+C∆t3p/2Mp/2−1
E

[M−1

∑
j=0

|g(Y∗
j )|

p|h(Y∗
j )|

p
]

≤C∆tE
[M−1

∑
j=0

|g(Y∗
j )|

p|h(Y∗
j )|

p
]

≤C+C∆t
M−1

∑
j=0

E[|Yj|
2p]. (A.8)

Acknowledgments

This work is partially supported by the National Natural Science Foundations of China
under grant numbers Nos. 11571206, 91130003 and 11171189. The author also would like
to thank the referees for the helpful comments and suggestions.



X. Yang and W. D. Zhao / Adv. Appl. Math. Mech., 8 (2016), pp. 1004-1022 1021

References

[1] N. BRUTI-LIBERATI AND E. PLATEN, Strong approximations of stochastic differential equations
with jumps, J. Comput. Appl. Math., 205 (2007), pp. 982–1001.

[2] G. CHALMERS AND D. HIGHAM, Asymptotic stability of a jump-diffusion equation and its nu-
merical approximation, SIAM J. Sci. Comput., 31 (2008), pp. 1141–1155.

[3] G. CHALMERS AND D. HIGHAM, First and second moment reversion for a discretized square root
process with jumps, J. Differ. Equ. Appl., 16 (2010), pp. 143–156.

[4] R. CONT AND P. TANKOV, Financial Modelling with Jump Processes, Financial Mathematics
Series, Chapman & Hall/CRC, London, Boca Raton, 2004.

[5] I. I. GIKHMAN AND A. V. SKOROKHOD, Stochastic Differential Equations, Springer-Verlag,
Berlin, 1972.

[6] X. DING, Q. MA AND L. ZHANG, Convergence and stability of the spilit-step θ-method for
stochastic differential equations, Comput. Math. Appl., 60 (2010), pp. 1310–1321.

[7] P. GLASSERMAN AND N. MERENER, Numerical solution of jump-diffusin LIBOR market models,
Financ. Stoch., 7 (2003), pp. 1–27.

[8] D. HIGHAM, An algorithmic introduction to numerical simulation of stochastic differential equa-
tions, SIAM Rev., 43(3) (2002), pp. 525–546.

[9] D. HIGHAM AND X. MAO, Strong convergence of Euler-type methods for nonlinear stochastic
differential equations, SIAM J. Numer. Anal., 40 (2002), pp. 1041–1063.

[10] D. HIGHAM AND P. KLOEDEN, Numerical methods for nonlinear stochastic differential equations
with jumps, Numer. Math., 101 (2005), pp. 101–119.

[11] D. HIGHAM AND P. KLOEDEN, Convergence and stability of implicit methods for jump-diffusion
systems, Int. J. Numer. Anal. Model., 3 (2006), pp. 125–140.

[12] D. HIGHAM AND P. KLOEDEN, Strong convergence rates for backward Euler on a class of nonlin-
ear jump-diffusion problems, J. Comput. Appl. Math., 205 (2007), pp. 949–956.

[13] C. HUANG, Exponential mean square stability of numerical methods for systems of stochastic dif-
ferential equations, J. Comput. Appl. Math., 236 (2012), pp. 4016–4026.

[14] M. HUTZENTHLER, A. JENTZEN AND P. KLOEDEN, Strong and weak divergence in finite time
of Euler’s method for stochastic differential equations with non-globally Lipschitz coefficients, Proc.
R. Soc. Lond. A Nsath. Phys. Eng. Sci., 467 (2011), pp. 1563–1576.

[15] C. KAHL AND H. SCHURZ, Balanced Milstein methods for ordinary SDEs, Monte Carlo Meth-
ods Appl., 12(2) (2006), pp. 143–170.

[16] I. KARATZAS AND S. E. SHREVE, Brownian Motion and Stochastic Calculus, 2nd ed.,
Springer-Verlag, Berlin, 1991.

[17] P. KLOEDEN AND E. PLATEN, Numerical Solution of Stochastic Differential Equations,
Springer, Berlin, 1992.

[18] Y. MAGHSOODI, Mean square efficient numerical solution of jump-diffusion stochastic differential
equations, Indian J. Statistics, 58 (1996), pp. 25–47.

[19] Y. MAGHSOODI, Exact solutions and doubly efficient approximations and simulation of jump-
diffsion Ito equations, Stochatic Anal. Appl., 16 (1998), pp. 1049–1072.

[20] X. MAO, Stochastic Differential Equations and Applications, Horwood, New York, 1997.
[21] G. N. MILSTEIN, E. PLATEN AND H. SCHURZ, Balanced implicit methods for stiff stochastic

systems, SIAM J. Numer. Anal., 35(3) (1998), pp. 1010–1019.
[22] X. WANG AND S. GAN, B-convergence of split-step one-leg theta methods for stochastic differential

equations, J. Appl. Math. Comput., 38 (2012), pp. 489–503.
[23] X. WANG AND S. GAN, Compensated stochastic theta methods for stochastic differential equtions



1022 X. Yang and W. D. Zhao / Adv. Appl. Math. Mech., 8 (2016), pp. 1004-1022

with jumps, Appl. Numer. Math., 60 (2012), pp. 877–887.
[24] F. WU, X. MAO AND K. CHEN, Strong convergence of Monte Carlo simulations of the mean-

reverting square root process with jump, Appl. Math. Comput., 206(2) (2008), pp. 494–505.
[25] W. ZHAO, L. TIAN AND L. JU, Convergence analysis of a splitting scheme for stochastic differential

equations, Int. J. Numer. Anal. Mod., 4 (2008), pp. 673–692.


